
Department of Computer Science

Tackling Design Patterns
Chapter 7: Absract Factory design pattern
Copyright c©2016 by Linda Marshall and Vreda Pieterse. All rights reserved.

Contents

7.1 Introduction . 2

7.2 Abstract Factory Pattern . 2
7.2.1 Identification . 2
7.2.2 Structure . 2
7.2.3 Participants . 2

7.3 Abstract FactoryPattern Explained 3
7.3.1 Clarification . 3
7.3.2 Common Misconceptions . 3
7.3.3 Related Patterns . 3

7.4 Example . 4

7.5 Exercises . 6

References . 6

1

7.1 Introduction

The Abstract Factory design pattern is a creational pattern used to produce product
with a common theme [2]. The factories are grouped together under a single interface
and linked to differentiated products. Each product hierarchy defines an interface.

7.2 Abstract Factory Pattern

7.2.1 Identification

Name Classification Strategy
Abstract Factory Creational Delegation (Object)
Intent
Provide an interface for creating families of related or dependent objects without
specifying the concrete classes. (Gamma et al. [1]:87)

7.2.2 Structure

Figure 1: The structure of the Abstract Factory Pattern

7.2.3 Participants

AbstractFactory

2

• provides an interface to produce abstract product objects

ConcreteFactory

• implements the abstract operations to produce concrete product objects

AbstractProduct

• provides an interface for product objects

ConcreteProduct

• implements the abstract operations that produce product objects that are cre-
ated by the corresponding ConcreteFactory

Client

• uses the interfaces defined by AbstractFactory and AbstractProduct

7.3 Abstract FactoryPattern Explained

7.3.1 Clarification

The abstract factory comprises of concrete factories. It is the concrete factories that
creates product.

7.3.2 Common Misconceptions

Important to note the subtle differences between Factory Method and Abstract Factory.
With Factory Method there is a one-to-one relationship between the factory and the
product, Abstract Factories exhibit a one-to-many relationship.

7.3.3 Related Patterns

Factory Method or Protoype
The Abstract Factory makes use of the Factory Method or the Prototype for the
creation of product. The choice of which route to follow is implementation depen-
dent.

Template Method
May be used within the abstract factory and product hierarchies.

Singleton
Concrete factories may be implemented as Singletons..

3

7.4 Example

Consider a classification for two-dimensional shapes. 2D shapes are further classified as
either polygons or not being a polygon. Figure 2 presents the hierarchy for polygons
represented by the system.

Polygons are classified as either quadrilaterals or triangles. All these classes are abstract.
The concrete classes are those that inherit from Quadrilateral and Triangle. The
Polygon hierarchy forms that product hierarchy for polygons.

The product hierarchy for non-polygons is shown in figure 3. NonPolygon is an abstract
class, while the Ellipse and Circle classes are both concrete classes.

As both these hierarchies represent two-dimensional shapes, another abstract class, the
Shape class is introduced in order to ensure consistency in both hierarchies (refer to figure
4). This class does not form part of the Abstract Factory design pattern, but does not
detract from it either. It merely defines the common aspects of all two-dimensional shapes.

The class Shape holds two state attributes that are of interest in this example. The first
is LoS, or lines of symmetry, for each concrete shape the lines of symmetry is stored. The
second interesting attribute is RS which represents the order of rotational symmetry of
the shape. Some shapes have a RS of order 0, while other shapes such as a circle have a
RS of infinity.

Till now, the example only comprises of a hierarchy of two-dimensional shapes. Notice
that this hierarchy classifies the shapes in terms of their structural characteristics. The
attributes of LoS and RS are just that, attributes, and do not form part of the classifica-
tion. In order to mesh the symmetry classification with the structural classification, an
abstract factory can be used to produce the shapes according to the symmetry character-
istics. The class that represents the Abstract Factory participant of the design pattern is
in figure 5.

The two concrete classes produce objects that are either line symmetric or rotational
symmetric. The classification of polygon and non-polygon is also preserved as each of
the classes produce their respective polygon types as well. The code showing how the
ConcreteFactory classes are implemented is given to show how the classes are linked.

class LineSymmetricShapeFactory : public ShapeFactory {
public :

LineSymmetricShapeFactory () : ShapeFactory () {} ;
LineSymmetricShapeFactory (int l i n e s) {magnitude = l i n e s ; } ;
Shape∗ c reatePo lygonIns tance () {

switch (magnitude) {
case 0 : return new RightAngledTriangle ;

// or re turn new Para l l e logram ;
case 1 : return new I s o s c e l e s T r i a n g l e ;
case 2 : return new Rectangle ;

// or re turn new Oblong ;
case 3 : return new E q u i l a t e r a l T r i a n g l e ;
case 4 : return new Square ;
default : return 0 ;

}
} ;

4

Shape∗ createNonPolygonInstance () {
i f (magnitude == 2)

return new E l l i p s e ;
return new C i r c l e ;

}
} ;

class RotationalSymmetricShapeFactory : public ShapeFactory {
public :

RotationalSymmetricShapeFactory () : ShapeFactory () {} ;
RotationalSymmetricShapeFactory (int order) {magnitude = order ; } ;
Shape∗ c reatePo lygonIns tance () {

switch (magnitude) {
case 0 : return new I s o s c e l e s T r i a n g l e ;

// or re turn new RightAng ledTriang le ;
case 2 : return new Para l l e logram ;

// or re turn new Rectang le ;
// or re turn new Oblong ;

case 3 : return new E q u i l a t e r a l T r i a n g l e ;
case 4 : return new Square ;
default : return 0 ;

}
} ;

Shape∗ createNonPolygonInstance () {
i f (magnitude == 2)

return new E l l i p s e ;
return new C i r c l e ;

}
} ;

To illustrate how the abstract factory is used to produce product, consider the following
main program.

int main () {
ShapeFactory∗∗ f a c t o r y = new ShapeFactory ∗ [2] ;
f a c t o r y [0] = new LineSymmetricShapeFactory ;
f a c t o r y [1] = new RotationalSymmetricShapeFactory (2) ;

Shape∗ shapes [4] ;

shapes [0] = f a c t o r y [0]−> c reatePo lygonIns tance () ;
shapes [1] = f a c t o r y [0]−> createNonPolygonInstance () ;
shapes [2] = f a c t o r y [1]−> c reatePo lygonIns tance () ;
shapes [3] = f a c t o r y [1]−> createNonPolygonInstance () ;

for (int i =0; i < 4 ; i++) {
i f (shapes [i] != 0)

shapes [i]−> s e t S t a t e () ;

5

}

for (int i =0; i < 4 ; i++) {
i f (shapes [i] != 0)

cout << ”Area = ” << shapes [i]−>area () << endl ;
}

for (int i =0; i < 4 ; i++) {
i f (shapes [i] != 0)

delete shapes [i] ;
}

for (int i =0; i < 2 ; i++) {
delete f a c t o r y [i] ;

}
delete [] f a c t o r y ;

return 0 ;

}

7.5 Exercises

1. Merge the class diagrams given in figures 2, 3, 4 and 5. Make sure that all the del-
egation, specifically the dependencies, relationships between the concrete factories
and the concrete products are included.

2. Consider the class diagram presented in figure 6 and identify the participants.

References

[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns :
elements of reusable object-oriented software. Addison-Wesley, Reading, Mass, 1995.

[2] Wikipedia. Abstract factory pattern — wikipedia, the free encyclopedia. http://

en.wikipedia.org/wiki/Abstract_factory_pattern, 2011. [Online; accessed 12-
August-2013].

6

http://en.wikipedia.org/wiki/Abstract_factory_pattern
http://en.wikipedia.org/wiki/Abstract_factory_pattern

Figure 2: Polygon class hierarchy

7

Figure 3: NonPolygon class hierarchy

Figure 4: Overarching abstract Shape class

8

Figure 5: Abstract Factory class hierarchy diagram

Figure 6: Candy class hierarchy diagram

9

	Introduction
	Abstract Factory Pattern
	Identification
	Structure
	Participants

	Abstract FactoryPattern Explained
	Clarification
	Common Misconceptions
	Related Patterns

	Example
	Exercises
	References

