
Improving Architectural Design Decisions

A. B. Boake
ABSA Group IT

268 Republic Rd, Randburg
andrew.boake@absa.co.za

Abstract. The value of architecture in a corporate information
technology environment lies in guidance on technology choice and
system design. Underlying this is the ability of the architecture team
to research the relevant architectural domains well, to formulate
informed strategies, to document these explicitly, and to guide
projects in their application. To do this, architects must make
decisions between competing directions, and on difficult trade-offs in
their application. These decisions are often based solely on
experience, gut-feel, even bias. They are typically arrived at using
implicit reasoning such as rules of thumb, and are often poorly
articulated. This results in poor corporate technology decision-
making, and unclearly documented architectural direction. This paper
investigates what can be done to improve this decision-making. It
positions architectural decision-making as an exercise in balancing
design forces, and the role of solution architect as facilitator between
the representative stakeholders. We describe an experience in
building a team which has followed this approach in a particular
corporate environment, and document the lessons learnt.

I. INTRODUCTION

Architecture is a loaded word in corporate IT. For some it
brings to mind a position of power and insight: architects as a
group of strategic thinkers, visualizing the future of business
and its supporting technology, laying out the desired
landscape, and guiding the pieces of that landscape into place.
For others, “architecture” conjures images of a tall white
tower, with sages looking out high above the plains of
ordinary experience and pronouncing what things ought to
look like without giving any indication of how to get there.
The difference lies in the level of involvement of architecture
in the trenches – not just prescribing strategic direction, but
being involved in the painful details of how to actually make
things work, design decision by design decision.

In a corporate IT environment, architecture must play a vital
dual role. Under conditions of increasing complexity, scale
and urgency, there is a need for a group of technology people
with a strategic mandate, to look ahead and steer the ship
around the dangers, towards the next port. But, equally
important, is the need for people who understand how to guide
the design decisions made in projects so that they align with
strategic architectural direction. These are the two faces of
architecture – strategy and application.

Some of the problems we face are due to the expectations we
place on architects. As architects we generally make decisions
using experience or rules-of-thumb. Apart from a computer
science education which gives us the basics of our field, we do
not often have the benefit of formal training in architecture. A
current lack of technically skilled resources propels us into

positions of power before our appropriate time, and we are
faced with making important strategic decisions, ill-equipped
to do so. Our experience is often limited to a particular
technology, or to projects in a particular area. The rules of
thumb we use are consequently a collection of commonly held
beliefs from those areas: you must layer your application; you
shouldn’t use object-oriented databases because they are
complex and proprietary and you can’t get the required
business reports out of them; Microsoft technologies are not
scalable; you shouldn’t use Java for financial transaction
processing. These beliefs form the dubious basis of many an
architecture, and substantiate many project design decisions.

It is not to say that these beliefs do not have a sound basis – it
is just that we don’t test them well enough before using them
as a basis of design decisions in particular situations.

The upshot is implicitly reasoned and poorly articulated
design decisions, leading to sub-optimal, or in some cases,
incorrect system designs.

The hypothesis of this paper is that, using the concept of
design forces, we can pose architectural design problems as an
explicit trade-off between competing forces, and more
specifically as a conversation between representatives of these
forces. Further, we can embed this notion into architectural
design artifacts and governance, thereby improving
architectural design decision-making.

The way in which we will approach this is by case study. Over
the past three years, ABSA has grown an IT Solution Design
team, and positioned it as the solution facilitation arm of IT
Architecture. A system of design governance has also been put
into place, which increases the visibility of design decisions,
and puts the different representative stakeholders in a position
to influence those decisions. These measures have experienced
a certain degree of success in improving the quality of
architectural design decisions.

In this paper, we describe the positioning of that team,
examine the lessons learnt through that particular experience,
and attempt to extract general principles that might be helpful
to others in a similar situation.

The paper is structured as follows: Firstly, we position how
different representative software development methods see
architecture. This is in order to position architecture with
respect to software development projects, so that we may

understand how architecture can influence project decision-
making.

We then look at the process of designing software solutions,
and in particular how designing these solutions inevitably
equates to trading off various forces. We also look at how
modeling helps us to visualize different aspects of a software
design.

We then go further than particular projects and position
architecture in the enterprise, showing its different constituent
parts. We build up a model of the enterprise, showing the
different components of an Information Technology division,
and how these provide the necessary aspects of business
system development and support. Within this context, we
examine the role of the IT Architecture department, and show
how it can be enhanced by the addition of an IT Solution
Design function, with design governance in the form of an
Enterprise Design Authority.

To illustrate the value added by IT Solution Design, we use
the concept of design forces discussed earlier, and walk
through an example of a conceptual design, showing how the
different forces can be balanced and documented explicitly, so
that the best overall solution is selected.

During this process, various tools are necessary to allow
solution designers to visualize and control aspects of the
design – we discuss a selection of tools that we have found
useful.

Finally, to conclude, we discuss some challenges faced by an
IT solution design team, and suggest further work in this space.

II. POSITIONING ARCHITECTURE – IN SOFTWARE
DEVELOPMENT METHODS

Software development methods are divided on the usefulness
of architecture. The Rational Unified Process (RUP), as an
example of an iterative-incremental method which emphasizes
the importance of documentation, sees the architecture of a
system as a group of decisions that should be made early, and
proven early, in the process of developing that system. These
are typically decisions that affect the qualities of the system,
such as security, performance and robustness. These decisions
may include, for example, dividing the system into
independent layers, and replicating the components in a layer
for the purposes of scaling and fail-over.

RUP believes that such decisions would be difficult to
introduce into the system at a later stage, necessitating much
disruptive change, so it is better to make these decisions early.
The wisdom of such decisions should also be proven early - in
the Elaboration phase of a RUP project, it is recommended
that an “executable architectural skeleton” be built that
demonstrates the viability of the architecture, and which is
used as a framework around which to build the rest of the
system. We share this sentiment of proving the architecture

“where the rubber hits the road” before basing large-scale
development on it.

Extreme Programming (XP), one of a group of agile methods
that emphasizes communication above documentation, is
rather disdainful of the concept of a group of clever people
who prescribe overriding structure to the rest of the project.
XP’ers rather see the architecture of a system as the common
understanding of system structure that the team shares. They
caution against complex up-front designs, supposedly put in
place to enable the system to absorb changes. The danger,
which is all too often experienced, is that the complexity of
the framework complicates the initial system development,
and when change does come, it is of an unexpected kind, is
not handled by the framework, and much change to the system
needs to happen anyway [Fowler]. In a similar vein, Fred
Brooks, in a chapter of his famous “Mythical Man-Month”
cautions against an architect’s second system, in which he is
now rearing to add all the bells and whistles, with all of the
accompanying complexity. XP, therefore, is wary of
architectural complexity without due value.

XP’ers also maintain that it is not necessary to make all
important decisions up front. A combination of test-first
programming (rigorously defining and testing the expected
behavior of system components), continuous integration
(ensuring that the parts of the system are continually
compatible) and refactoring (being able to change the design
of the system without changing its behavior) means that it is
possible to start with only as much of a framework as is
absolutely necessary to deliver the initial parts of the system,
and to add complexity as it is needed.

Here we believe a word of caution is necessary. As shown in
Figure 1 below, in system design, there are two kinds of
simplicity: naïve and informed. Naïve system design is how
one starts out. As you add functionality, the design becomes
more and more complex in order to cater for that functionality.
It takes real skill to take a step back and discern a simple
design that handles all of the current functionality, simply.
Here is where experience such as design patterns and
architectural styles give the system a coherent structure. It is
also debatable whether one can introduce the design
disciplines necessary for such an informed simplicity design
only later on in the project.

Figure 1: Moving from Naive to Informed Simplicity

III. DESIGN FORCES

We are told that the essential difference between science and
engineering is that science observes the world and attempts to
understand and explain it, while engineering wants to change

the world, to create something that was not there before, for
the benefit of people. Science is therefore chiefly concerned
with analysis, while engineering is concerned with synthesis.

Synthesis involves design. Synthesis involves putting together
different components, creating something in an existing
environment that will achieve an end. Christopher Alexander,
in his book “Notes on the Synthesis of Form” describes this
process using an example of a kettle. The intended outcome is
something that makes hot water, but designing the kettle
involves balancing many different forces. The size of the
kettle is a balance between the amount of water to be boiled,
the speed of boiling it, and the ability to carry it safely. The
materials used are a balance between taking advantage of their
properties (the handle must insulate the user from the heat, the
body must contain heat and be easy to clean), ease and cost of
manufacture (the more materials there are, the more complex
and therefore the more expensive the manufacturing process),
aesthetics (depending on the target market, the kettle must
appeal to perceptions of style), and safety (the design must
take into account the dangers of combining electricity and
water, avoiding burns and spillage). Alexander says that this
typifies design problems: there are requirements to be met,
and there are interactions between the requirements that make
the requirements hard to meet.

In the same way, design of software solutions involves the
balancing of many forces. Users want features which are easy
to learn and use. Project managers want these developed using
minimal time and resources. Architects want system quality
and compliance to standards. Unfortunately, most of these are
in opposition, and need to be traded off in the design.

These trade-offs bring to mind physical forces that work in
opposition to one another. As seen in Figure 2, for an aircraft
to fly, several forces need to be in balance: the thrust of the
engines overcoming the drag of friction, and the lift from the
wings overcoming the aircraft’s weight.

Figure 2: Physical Forces

In a similar way, we may envisage design forces on a software
system as weights acting on a ball through a system of pulleys
(see Figure 3).

Figure 3: System Design Forces

Each design force seeks to pull the final solution in a
particular direction, and it is the balance of these forces that
positions where the ball (the final system design) ends up.

An example might clarify these forces and different ways they
may be balanced. Imagine a situation where some software is
required for our business. There are two options: we can buy
an existing package and install it, or we can build a new piece
of software. The two options are depicted in Figure 4 below.

Figure 4: Two Options

Firstly, a word on the diagram type being used. This is known
as a ‘radar’ diagram – several dimensions are shown as arms
radiating out from the centre. The centre is ‘bad’ and the outer
ends are ‘good’ for each dimension. The overall ‘shape’ of the
solution can be seen in how much area is covered.

In these two options, we can see how different ‘design forces’
are balanced in different solutions to the same problem. In the
right hand option, the package vendors will have their own
architecture, chosen for a packaged solution, so compliance to
our architectural standards will not be good. Also, their choice
of security and disaster recovery will not be to our required
levels. However, seeing as the functionality is already written,
the speed of delivery will be excellent.

In the left hand option, we can build the system according to
our architectural standards, providing our desired levels of
security and disaster recovery, and optimize storage. But, we
will take longer to deliver.

Presenting these two ‘shapes’ of the solutions on offer, we can
more easily reason through their advantages and
disadvantages.

But, how do we come up with solutions that balance the forces
experienced? It is here that design patterns prove useful. A
design pattern can be seen as an explanation of how, in a
particular situation, the acting forces can be balanced in a way
that provides a good design, or a desired outcome. As an
example, Christopher Alexander, in his book “A Pattern
Language” sets out a system of design patterns for the built
environment: rooms, homes and cities. In that system, he
describes typical situations where design forces oppose one
another, and suggests ways in which they may be balanced.

A particular example might illustrate this principle. Alexander
describes someone coming into a room with a window. He
stands at the window looking out, until he gets tired. He then
finds somewhere to sit. Rested, he feels the need to look out
again, until he tires. The forces of looking out and sitting are
not in balance. The solution is to introduce a place where he
might sit and look out, called a Bay Window.

Figure 5: Bay Window

Originally inspired by Christopher Alexander and his building
patterns, there is extensive software design patterns literature
suggesting ways of achieving decoupling, guaranteed message
delivery, portability, scalability etc. These patterns range from
code-level principles right the way to architectural styles.

IV. MODELING

Models are important to architecture because they allow us to
visualize aspects of different solutions. Modeling is of course
a mechanism of abstraction – we use modeling elements to
depict important aspects of a system to particular stakeholders.
For instance, those concerned with the functionality of a
system might want to see a model of the system’s business
domain (a class diagram), those concerned with performance
might want to see a model of the executing processes and the
flow of data between them, and those concerned with the
hardware requirements and configuration might want to see a
physical view of the machines and networks.

This is the crux of the concept of architectural views, for
example as described by Kruchten [1]. Architectural views are
depicted using models, at a certain level of abstraction, to
answer particular questions (eg what, where, who, how, when,
why) (see Zachman [6]). A model we have found useful to

understand the different dimensions of architectural views is
depicted in Figure 6.

Figure 6: Architectural Views

Firstly, let us define an architecture describing a domain as
broadly consisting of the main components in that domain,
their responsibilities, their relationships, and constraints on
these. To describe a typical business-supporting IT, we can
then define four main kinds of architecture: how the business
functions, the application components that support the
business, the information being manipulated, and the IT
infrastructure that the applications and information are
deployed on. This forms the ‘domains’ dimension of our
model.

The stakeholders can be arranged, depending on the level of
detail required by each. For example, the system owner or
sponsor is really only interested in overviews, to place the
value of the system in context. The planner is interested in
more detail, but still only at a conceptual level. The designer
would be interested in a logical level of detail, whereas the
builder would be interested in detailed information. This
forms the ‘levels of abstraction’ dimension of our model.

Finally, we might be interested in what the picture looks like
right now, before we start changing anything. We might then
also be interested in what it should look like in the future, and
in a sequence of steps that will allow us to get there. This is
the ‘time’ dimension.

We will use this model later in our walk-through of a
conceptual design to position the different architectural views
being used.

It is interesting to note that XP and RUP also differ in their
approaches to modeling. While RUP emphasizes the
importance of models in facilitating the design thought
processes and documenting these explicitly, XP sees models
more as transient diagrams used on a white board to describe
aspects of the system, as a medium to facilitate tacit system

knowledge exchange between the team members, with the
code itself being the source of ground truth.

As the materials of architecture consist of documents and
models, we are more aligned with the RUP thinking. Models
allow us to visualize aspects of the system, reason through
design rationale, and document it.

V. POSITIONING ARCHITECTURE – IN THE ENTERPRISE

Up to this stage, we have dealt mainly with aspects of
architecture within a project. In smaller software development
efforts, where the project is the whole, and in software
development project houses, where each project provides an
architecture to the client, it is easy to confuse architecture with
the project’s system design.

In larger enterprises, where the architecture is the state of the
supported systems, and it is worked on by a sequence of
projects, it is necessary to position architecture beyond
projects, in the enterprise as a whole.

In this section, we will build up a model of a typical business
enterprise. We start with a simple situation (Figure 7) where
business units with supporting systems give through
requirements to projects, which deliver systems to them.

Figure 7: Business Units' Projects

To prevent current project staff from having to spend more
and more of their time running the systems they have
developed before, these systems are handed over to people
dedicated to IT operations, who become responsible for their
operation.

Figure 8: IT Operations

As projects come and go, people are assigned to these projects
from resource pools (Figure 9).

Figure 9: Project Resources

A Project Office is established to coordinate the efforts of
many projects. Also, a function called Business Change
becomes responsible for managing and controlling the
changes to the business, and becomes the conduit through
which IT projects are executed (Figure 10).

Figure 10: Business Change & Project Delivery

As the number of projects increases, it becomes necessary to
guide the total effort strategically. IT Architecture sets
standards and guides the projects and IT infrastructure support
(Figure 11).

Figure 11: IT Architecture

In a small company, it is possible for an architect to be
responsible for the architecture as a whole. However, it can
quickly become a large responsibility. Quite often, at this
stage, architecture gets split into three: business architecture
(responsible for strategic business direction, including the
development of new products and processes), systems
architecture (responsible for strategic application component
direction, including build or buy decisions) and infrastructure
architecture (technology infrastructure support, including
platforms and networks).

For larger enterprises, these functions are looked after by
teams of people, and the divisions are more granular. An
example breakdown is shown in Figure 12.

Figure 12: Enterprise Architecture

The whole is now known as Enterprise Architecture [7]. This
consists of business architecture, which looks after
organizational structure, the products and processes, and the
information (eg the data warehouses), and technology
architecture, which is split into those that look after the
application components, the data stores, the deployed
packages (eg SAP), the integration middleware and the
platforms and networks.

At this stage, Architecture becomes an organization in its own
right, with much coordination required for it to deliver a
coherent service.

It is interesting to note that, at this granularity, the different
forces in the software development lifecycle are represented
by different organizational units. A newly formed project,
trying to deliver a new piece of functionality, means the
project manager and his development resources are faced with
trying to satisfy an intimidating array of stakeholders.

VI. IT SOLUTION DESIGN

Each of these stakeholders is charged with looking after the
strategic direction of a particular part of the solution, but there
is no one trying to bring them together tactically, in the
context of a particular project. Projects try to satisfy the most
obvious stakeholders, but mostly follow tactical solutions in
the interests of delivery. This results in the following problems
in solution delivery:

• Too little coordination of technology direction in
projects: projects make individual tactical decisions
based on development expediency.

• Too little understanding of inter-relationships
between individual projects. Projects often work
against one another rather than cooperating, and often
get held up by unexpected dependencies on each
other.

• Duplication of work across projects.
• Too little guidance and governance of standards and

compliance, because architecture is not explicitly
involved in project work.

• Too little operational and performance consideration
in project designs. A focus on development
expediency has the result of forgetting important
non-functional considerations in system design.
Consequently, new systems begin to suffer from, for
example, performance and operational management
problems.

• Difficulties in reliable deployment and management
of systems.

It is at this point that a new role is often introduced to
architecture – that of Solution Architect. The solution architect
is charged with walking along with a set of projects, and
guiding them towards a comprehensive solution. In other
words, while the project manager has as his mandate the
coordination of time and resources, the solution architect’s
mandate is solution quality, making sure that all of the aspects
necessary for a well-designed solution have been addressed.

The solution architecture team (called IT Solution Design in
ABSA) provides design direction and review during the entire
development lifecycle (see Figure 13).

Figure 13: IT Solution Design

Early in the business change lifecycle, the team is expected to
provide input into the technical feasibility of proposed projects.
When the projects are constituted in the project office, the
team again provides assistance in the estimation of the effort
required to complete the project, the impact the project will

have on the current application landscape, and the options
available to pursue. In the Design phase, a solution designer
facilitates and documents the high level design decisions, and
in subsequent phases, acts as consultant, reviewer and
mediator to ensure that these decisions are followed.

Another view of this process is provided in Figure 14. The
outer ring of process steps documents the typical activities
undertaken in a system development lifecycle, starting from
normal business operations at the left. Analysis of the business
problem and its proposed solution is followed by architectural
direction, analysis of systems enhancements to support the
new solution, development, testing, and implementation of the
solution. Change management in the business operationalizes
the solution, and it is incorporated into normal business
operations.

Figure 14: Solution Design Process

The inner ring of project management activities shows when
business and IT project management takes the lead in
coordinating these activities.

Between them is a ring of activities of the solution design
team. During the business analysis stage, a solution designer
prepares a conceptual design, which enumerates the different
options available, and their trade-offs. Having chosen one of
the options, in consultation with the different architecture
stakeholders, the solution designer prepares a high level
design, which in essence is the blueprint for subsequent
development and infrastructure, each of which use this
blueprint as a basis for their own detailed designs. During the
rest of the lifecycle, the solution designers act in a supervisory
and consulting capacity.

There are two primary aspects to solution design – facilitation
and governance. The facilitation aspect has to do with how
solution designers approach their task. A solution designer

need not be the expert in any particular field, but needs to
know enough of all of the fields to be able to facilitate the
necessary trade-offs. In the preparation of a design (we shall
see an example in the next section), this facilitation is a
difficult task – each of the experts needs to be consulted, and
their input consolidated into an overall design. For this reason,
the people hired for this role needed to be experienced
architects in their own right. One of the major factors of
success in a designer, though, is being able to work with
people and convince them to make concessions in what they
might consider imperative, to cater for the concerns of others.

The second primary aspect is governance. For the overall
success of the solution design initiative, it was vitally
important to set up a senior decision-making body that would
oversee its governance. This body (called the Enterprise
Design Authority, or EDA) would consist of senior
representatives of the stakeholder community: programme and
project managers, resource managers, IT services managers,
information management, and senior architects from the
different areas (networks, platforms, security, disaster
recovery and applications to name a few). Meeting every week,
a working committee would sit to hear presentations of
designs to be approved. This would give the senior IT
decision-makers a view into the project pipeline, and real
influence into what would be allowed to continue beyond
conceptual or high level design stage. Each stakeholder would
have the right to veto if desired, but would rather be
encouraged to state the case for a higher consideration of the
particular design force that they represent.

What this achieved, more than anything else, was an explicit
documentation and ratification of design rationale and
decisions. Design decisions were no more implicit, and on the
shoulders of an individual – the EDA would officially give a
stamp of approval to the design direction, or would guide the
direction until it could give approval. The designer would
prepare the ground for difficult conversations by facilitating a
preliminary solution to be brought before the EDA, and the
members representing the different design forces would
participate in conversations at the EDA that negotiated the
necessary trade-offs.

VII. AN EXAMPLE

Let us walk through an illustrative example to see how this
would work in practice. For our chosen example, we are going
to add workflow to a particular banking product system to
allow the business to better measure the effectiveness of their
processes.

The term “workflow” refers to a kind of system that allows
one to represent, execute and measure the performance of a
business process, such as claiming on short term insurance.
The different steps are modeled, and the participants, either
human or system, are identified. When these processes are
stepped through, the system measures the time taken for each
step, producing reports that can be examined for process
improvement. Taken a step further, the system can initiate

corrective action, for example escalating notifications to
managers if service levels are about to be exceeded.

A document management system is often used in concert with
workflow. This kind of system allows users to capture
digitally all documentation associated with a process (such as
forms, certificates and correspondence), and sends these along
with each step in the process, so that participants in the
process steps are able to view all of the relevant
documentation in order to make decisions.

In preparation for this conceptual design, the reader is
reminded of our modeling framework (seen here in Figure 15).

Figure 15: Model Framework

We will use this to position each of the models in our
conceptual design.

Firstly, we need to document which steps in the business
process we will need to change to add workflow and
document management. Figure 16 highlights the additional
steps where documents are captured digitally.

Figure 16: To Be, Conceptual Business View

Next, we need to model the information that we will need to
store. This is shown in Figure 17.

Figure 17: To Be, Conceptual Data Model

Figure 18 shows what application components will be needed
in the new application landscape.

Figure 18: To Be, Conceptual Application Component Model

Finally, Figure 19 shows one possible infrastructure
configuration to support these applications. This particular
configuration places the capture and storage of digital
documents in the branches, a decentralized model. Another
option we could consider is a centralized solution, where all
storage and processing of data happens in the central data
centre.

Figure 19: To Be, Conceptual Infrastructure Model

The first three diagrams give context to the EDA about the
business problem, and the application landscape involved.
However, the real options in this conceptual design are the
trade-offs involved in different infrastructure deployments.

The radar diagrams shown in Figure 20 show summaries of
the different design forces inherent in these options, after
consultation with the experts in the different fields.

Figure 20: Radar Diagrams

Briefly, the decision rationale is as follows: The decentralized
option, although it allows users to very quickly access their
local documents (they are stored locally), access to remote
documents would be slow. This option gives them regional
autonomy (because they are not dependent on centralized
deployment of hardware). However, the total cost of the
solution is prohibitive because of the duplicated distributed
hardware, and the manageability of the solution leaves much
to be desired.

On the other hand, a centralized solution makes local image
access unacceptably slow. It also slows down delivery because
of a dependency on centralized deployment. However, the
management of the solution is enhanced, as is architectural
acceptance of the solution, and the total cost is considerably
lower.

After deliberation at the EDA, it was decided that a hybrid
solution, deploying the hardware at regional hubs, would give
a measure of the advantages of both solutions, without the
severe disadvantages of each.

This simplified example is illustrative of the conversation that
regularly occurs during conceptual design presentations at the
EDA, and illustrates the kind of reasoned design decisions that
can be reached.

While the EDA is also involved at the next level of detail,
high level design, we will not cover that in this paper, save to
mention that a high level design involves the more detailed
design decisions for each of the design forces (including
security, disaster recovery, storage capacity, network capacity
and platforms), signed off by the representative parties, so that
a unified blueprint guides the further development,
infrastructure procurement and installation.

VIII. TOOLS

ABSA’s solution design team grew from around 6 people
originally, to around 25 at its largest. As is normal, growth
implies the need for increased coordination and automation.
This section describes some of the tools we introduced to this
end.

Project Tracking
Projects that engaged the services of a solution designer
needed to go through a project tracking tool. This was
primarily to keep track of the time spent by team members, as
it was expected that our time would be recovered from those
projects.

Design Effort Estimation
As we went through different projects, we started to
understand the effort it would require to do the designs for
different kinds of projects, and we became able to estimate
more accurately as we went along. We devised a spreadsheet
that would ask for certain key properties of the project in
question (such as how many business units were involved,
how much integration, security issues such as external access,
and reliability expectations), and from that information would
estimate the design effort required.

Quality Attribute Gathering
We realized that much of the information we needed to gather
had to do with the non-functional requirements. It was
difficult to remember quite an extensive list, so we developed
a checklist with descriptions of the requirement types and the

implications, both in terms of design considerations, and who
we would have to talk to.

Peer Reviews
As more team members came aboard, we needed to give
guidance to the less experienced designers, as the kinds of
decisions we were facilitating were significant. So, we set up a
peer review panel which met twice a week, to be of assistance
at various stages of the design process. Solution designs would
be brought to the panel at the 20% stage, which really just
amounted to a conversation about direction and options, and
also at the 80% stage, which was a dress rehearsal for the
presentation to the EDA. The more experienced designers
knew the kinds of questions the EDA was likely to ask, and
were able to help the less experienced designer be prepared for
these.

The real value of the peer review is and continues to be
exchange of design knowledge. Although intended for the
purposes of mentoring, this shared conversation went much
further, into the area of knowledge management. More about
this later.

Landscapes
As a long-standing member of the peer review panel, one of
the advantages that I experienced was to have a bird’s eye
view of all designs that came across our desks. We were able
to begin to piece together a map of the ABSA application and
infrastructure landscape, which, it appeared, was not available
anywhere else. We started documenting this map, so that
designers that were new to an area would not have to gather
the information from scratch. It turned out that the maps were
extremely useful to many other people, and we added different
‘scales’ of maps to our product range: a one-pager, which
would allow CIO’s responsible to the different business
sectors to explain impacts of proposed projects to their
business clients, and a five-pager, which helped both business
units and designers to understand what was there before they
started changing anything, and to visualize the context and
constraints of a design.

Repository
As the numbers of designs increased, we needed to manage
our documents. We started by putting them on a shared drive,
but also needed version control and metadata-based searching,
so we put them onto a Sharepoint portal, in a searchable
document library. We are busy with an exercise in
consolidating all of the designs and the landscapes into a
single searchable repository.

Corporate System Patterns
As the designs came across our desks, we also started to notice
certain patterns. There were a number of recurring kinds of
designs, which needed to address particular aspects. For
example, we saw a series of what were called ‘White-
labelling’ projects, where we would provide the back-end
administration of banking products for different brands. These

designs almost always involved re-branding the channels
(internet site, call centre, autobank), labeling the information
in the common client base, and integrating to core banking
applications such as accounts, payments and credit-scoring
engines. We started documenting these patterns, which began
to be a vocabulary for project characterization. Much more
work is necessary in this area.

IX. CHALLENGES

Solution design is not without its challenges. It is by its nature
demanding and difficult work, and the expectations on
designers to know more about the ABSA landscape, and to
produce more designs in a shorter time, is increasing. This
section enumerates some of the challenges we face.

Knowledge Management
Although we keep a repository of our designs and landscapes,
one of the real difficulties of solution design is to distil the
right information relevant to a design problem. Much of it
seems to be in people’s heads, and much of that, when
gathered, is inconsistent and inaccurate. This leads to us
having to expend tremendous effort on acquiring, checking
and documenting knowledge, an overhead not always planned
for, and which extends delivery times. Using incorrect
information as a basis of our designs can lead to serious
credibility issues, so knowledge management is key to our
continued success. An investigation is under way into more
advanced knowledge management tools. A promising
direction is a model of explicit design rationale, documented
in an ontology, as described by Akerman [4].

Project Delivery Bottlenecks
Sometimes success can be your biggest enemy. Although the
solution design team has added tremendous value through the
delivery of improved designs in projects, a single design team,
single peer review panel and single Enterprise Design
Authority constricts production and evaluation of design
artifacts into a bottleneck.

There is currently tremendous pressure on increasing IT
delivery to the business. Part of the approach being taken to
achieve this is to dedicate resources to particular sectors of the
business. Designers are allocated to a particular business area,
with the intent that they build up relationships, flesh out the
relevant landscape, and more readily understand the context of
designs in their area. A Principle Designer oversees the
portfolio of designs and landscapes in a sector.

Another important initiative is to prioritize designs – the more
important ones, where we can add more value, need more
attention. We are working on a prioritization model based on
novelty, size and complexity, which should cause run-of-the-
mill designs to pass through the Design Authority for
information only, allowing them to concentrate their efforts on
the more challenging design issues.

Coordination with other Design Authorities
Being part of a larger corporate also brings its challenges.
Being part of Barclays, we are participating in an increasing
number of projects that cross corporate boundaries. This
means that design in these projects is subject to the scrutiny of
different Design Authorities. Conversations on this
collaboration are challenging, and ongoing - inter-company
collaboration requires both coordination of their efforts and
consensus of their decisions.

X. CONCLUSIONS AND FURTHER WORK

In this paper, we noted that architectural decision-making is
often made implicitly and not documented well. We
introduced and illustrated the concept of design forces, and
suggested that phrasing architectural decisions in terms of
trading off different design forces might improve the
articulation of such decisions. We then described the workings
of a solution design team that applied these concepts in
improving the architectural design decisions in projects.

Our conclusions are that we have proven the basic concept in
practice, but we face some scaling challenges.

More work is required in the documenting of technology
landscapes, especially in depicting different views for
different stakeholders, and the use of better tools to enable a
less manual extraction of relevant model elements.

More work is also required in characterizing and articulating
enterprise system design patterns, especially relating them to
system qualities.

ACKNOWLEDGMENTS

This work was carried out as part of my duties as a Solution
Designer at ABSA’s Republic Road IT campus. Many thanks
to Diane Skinner for her leadership and foresight in building
this team. Many thanks to my colleagues in the design team,
especially to Alistair, Ruben, Rod, Paul and Lukas – for
interesting, sometimes robust, and always challenging
conversations.

REFERENCES
[1] Kruchten P., “Architectural Blueprints – The 4 + 1 View Model of
Software Architecture”, IEEE Software 12 (6), November 1995, pp. 42-50.
[2] Kruchten P., “A Taxonomy of Architectural Design Decisions”,

Software Architecture Workshop, Groningen, December 2004.
[3] Brooks F, The Mythical Man-month - Essays on Software Engineering,

20th Anniversary edition, Addison-Wesley, 1995.
[4] Akerman A & Tyree J., “Using ontology to support development of

software architectures”, IBM Systems Journal, Vol 45, No 4, 2006.
[5] Abrams S., Bloom B., Keyser P., Kimelman D., Nelson E., Neuberger

W., Roth T., Simmonds I., Tang S. & Vlissides J., “Architectural
thinking and modeling with the Architect’ Workbench”, IBM Systems
Journal, Vol 45, No 3, 2006.

[6] Zachman J., “A framework for information systems architecture”, IBM
Systems Journal, Vol 26, No 3, 1987.

[7] Goethals F., “An overview of enterprise architecture framework
deliverables”, SAP Leerstoel.

