
Reflections on Coding Standards
in Tertiary Computer Science Education

Vreda Pieterse and Derrick Kourie.

Abstract—Despite general agreement among practitioners and
educators alike that the application of solid uniform coding
guidelines is beneficial, the application of coding standards
in computer science education seem to be problematic. We
applied interpretive research to arrive at an understanding of the
attitude of leturers towards coding standards. We identified five
aspects of coding guidelines through reasoning about proposed
categorisation of coding guidelines found in the literature. We
discuss the viewpoints of the interviewed lecturers in terms of
these aspects. We conclude with our recommendations to promote
the teaching of good programming practices in higher education.

Index Terms—Coding Standards, Programming Style, Teach-
ing.

I. INTRODUCTION

THERE is ample literature that discusses the benefits of
having uniform coding styles and standards. Most readers

will agree with the following without hesitation:
Inexperienced developers, and cowboys who do not
know any better, will often fight having to follow
standards. They claim they can code faster if they
do it their own way. Pure hogwash. They MIGHT
be able to get code out the door faster, but I doubt
it. Cowboy programmers get hung up during testing
when several difficult-to-find bugs crop up, and when
their code needs to be enhanced it often leads to a
major rewrite by them because they’re the only ones
who understand their code. Is this the way that you
want to operate? I certainly do not. [1]

According to Bridger and Pisano [2] coding standards are laid
down to achieve robust and error free code that is easy to
use, understand and maintain. Style is a crucial component of
professionalism in software development. Clean code that fol-
lows stylistic conventions is easier to read, maintain, and share
with colleagues. When a consistent style is used throughout
a project, it makes it easier for the developers working on
the project to understand each other’s code [3]. Oman and
Cook [4] found through empirical studies that the style used
when writing or maintaining a program has a direct impact
upon the quality of the software and the comprehensibility
and maintainability of a program.

We need to educate students to become professional, respon-
sible, reliable developers, capable of producing quality code.
This can partially be achieved by setting a good example to the
students. Ala-Mutka et al. [5] contends that common coding
conventions are very important in software projects in practice
and advocate that university courses should pay attention to
these basic rules, to give a good understanding of their benefits
and usage for all students. Poole and Meyer [6] contends that

the requirement to adhere to solid coding standards evidently
leads to the development of quality programming habits which
students are able to demonstrate in producing quality code.

Adhering to styles and standards based on good program-
ming practices are not only beneficial for sharing and under-
standing code among programmers. These practices can also
increase the productivity of individual programmers and sim-
plify the evaluation of code written by students. Programmers
who code in good style are less likely to have silly bugs
and will actually spend less time developing and debugging
their code [7]. Zaidman [8] reports improved appearance
and reliability of student programs after the adoption and
enforcement of departmental programming style and coding
guidelines at Mary Washington College in Fredericksburg.

Despite the general agreement among practitioners and edu-
cators alike that the application of solid uniform coding guide-
lines is beneficial, standardisation of guidelines has eluded
us. Enforcement also seems to be particularly problematic in
educational settings. We embarked on research to investigate
the teaching of coding standards in higher education. In the
following section we discuss our research design.

II. RESEARCH DESIGN

A. Interpretive Research

Trying to reach an understanding of issues concerned with
teaching and learning, implies getting to grips with a whole
range of human issues such as the attitude of students, the pol-
itics within departments and the ethos and environment of the
institition [9]. Understanding grows through experience, ob-
servation and contemplation. Lewins and Silver [10] reminds
us that the role of the interpretive researcher is not neutral,
and that the accumulation of ideas and the analysis of the
data should be consciously reflexive. Interpretive studies hence
seek a relativistic, albeit shared, understanding of phenomena
under investigation [11].

B. Research Problem

A debate was started in the Department of Computer Science
at the University of Pretoria aimed at establishing a coding
standard that could be applied in the presentation of all
modules in the department. Supporters of the initiative agreed
with Poole and Meyer [6] who argued that when there is
no uniform departmental coding convention, we do not, as
a department, practice what we preach. Although there was a
general consensus that it would be beneficial to lay down a
standard, the lecturers in the department did not agree on the
content of the document. This situation gave rise to the need
to answer the following questions:

1) What are the characteristics of a coding standards doc-
ument suitable for higher education?

2) What are the obstacles in teaching good programming
practices?

3) How should good programming practices be taught?

C. Research Paradigm
This research was conducted within the interpretive paradigm.
In the research reported on here, the aim was not to de-
rive statistically meaningful results that would corroborate a
hypothesis about the benefits of the application of coding
standards in an academic setting — rather, we wanted to
understand the attitude of lecturers towards the application of
coding standards in their teaching, and to answer our research
questions through arguments based on our observations. Thus,
the interpretive paradigm was deemed to be appropriate for the
research.

D. Credibility, reliability and ethical measures
Both authors have taught programming modules at various
levels, and can therefore claim reasonable insight into the
abilities and attitudes of students who are learning to pro-
gram. They also have participated in conversations on the
topic with other educators at various occasions. These in-
formal discussions over a long period of time have enriched
their insight and their informed opinion regarding the topics
discussed in this research. The professional experience of
other computer science educators/lecturers was tapped into by
means of a questionnaire. In order to eliminate bias in the
results, responses were analysed with the aid of an academic
peer, thus ensuring inter-coder reliability. All participation
was voluntary and anonymous. All participants could have
ignored the invitation to answer the questionnaire without any
consequences.

E. Data collection
A questionnaire containing of the following four open-ended
questions was compiled:

1) Think back to the last time you awarded marks for ad-
hering to prescribed coding standards in an assignment.
What were the prescribed standards? What % weight was
awarded for adherence to coding standards in relation to
the complete assignment?

2) Think about the last time that you did not fully agree
with a coding example in the textbook used by the
students. What did you do, and why?

3) Describe the context of the last time in which you talked
about readable code to students.

4) Describe the context of the last time in which you talked
about elegant coding solutions to students.

These questions were asked in a manner to encourage rich
qualitative responses that could lead to more insight into
the attitude of the respondents. We were also interested if
the respondents had specific preferences with regard to loop
structures and posed the following problem to them:

5) Reflect on the following two solutions for a problem.
State which one you would personally prefer, and why?

====SOLUTION 1=============
whi le (t rue)
{

i n t t a s k = bag . i n () ;
i f (t a s k < 0)
{

bag . o u t (t a s k) ;
break ;

}
/ / compute r e s u l t
bag . o u t (r e s u l t) ;

}

====SOLUTION 2=============
i n t t a s k = bag . i n () ;
whi le (t a s k >= 0)
{

/ / compute r e s u l t
bag . o u t (r e s u l t) ;
t a s k = bag . i n () ;

}
bag . o u t (t a s k) ;

The respondents were also encouraged to add additional
comments by concluding the questionnaire with the following
prompt:

6 Enter anything else you would like to share with us
regarding the teaching of coding standards.

An online survey containing this questionnaire was hosted on
the server of the Department of Computer Science, University
of Pretoria. Participants were invited via e-mail to complete the
questionnaire. All members on the e-mail list of the Southern-
African Lecturers Association (SACLA) were invited to par-
ticipate. This list has 235 members. A total of 17 participants
completed the questionnaire.

III. METHOD OF DATA ANALYSIS AND INTERPRETATION

We decided on a categrisation of coding standards prior to our
data analysis. Thereafter we analysed the data in phases, one
category at a time. We gained insight in the attitude of lecturers
towards the teaching of each of these categories, by reading
their answers to all the questions searching for snippets in
their answers that said something about the specific category
at hand. In the following section we discuss our classification
of coding standards.

IV. CLASSIFICATION OF CODING STANDARDS

A coding standard can broadly be defined as a set of pro-
gramming styles and practices to which a group of people
adhere, in the belief that such adherence contributes the overall
effectiveness in producing high quality code that is under-
standable and maintainable. Oman and Cook [12] developed
a taxonomy of styles with four major categories which they
labelled general practices, typographic style, control structure
style, and information structure style. According to Cobb
[13] the principal elements of good programming style are
the requirements of aesthetics, maintenance, and portability.

TABLE I
CLASSIFICATION OF CODING STANDARDS

Oman and Cook [12] Cobb [13] Ala-Mutka et al. [5]

1 Typographic Style Aesthetics Typography
2 General Practices Maintenance Clarity and simplicity
3 Control Structure Style Modularity

Reliability
4 Portability Independence
5 Information Structure Style Effectiveness

Ala-Mutka et al. [5] identified six categories for the classi-
fication of elements of good programming practices namely
modularity, typography, clarity and simplicity, independence,
effectiveness, and reliability. For our analysis we decided on
a classification that incorporated aspects of all three these
classifications as shown in Table 1.

We call our first category is typography. It corresponds
with Oman and Cook’s typographic style category, Cobb’s
category of aesthetics as well as Ala-Mutka et al.’s category
of typography. It deals with layout issues.

Our second category is called textbfclarity. It is about
measures, besides typographic rules, that can enhance the
readability and understandability of code. Some of Oman and
Cook’s General Practices can be seen to fall in this category,
for example ”Don’t comment bad code - rewrite it.”. It also
includes aspects of Cobb’s category of maintenance.

Our third category called reliability concerns the production
of robust and error-free code. Most of Oman and Cook’s
Control Structure Style which pertains to the choice and use of
control flow constructs, falls into this category. It also relates
to Cobb’s maintenance category. We collapsed Ala-Mutka et
al.’s modularity and reliability categories into this category.

Our fourth category is called flexibility. It looks at methods
to build adaptable code that is portable and can easily be
changed and re-used. Oman and Cook would have included
this category in their General Practices Style as one of their
General Practice style examples is ”Use only ANSI standard
features”. It encapsulates Cobb’s portability as well as Ala-
Mutka et al.’s independence categories.

Our final category is effectiveness. It regards finding el-
egant and efficient solutions. We deem Oman and Cook’s
Information Structure Style that refers to the choice and use
of data structure and data flow techniques to be included
in this category. It also corresponds with Ala-Muta at al.’s
’effectiveness’ category.

In the following section we discuss views on each of these
categories. We combine ideas found in scholarly publications
with the views of our participants to arrive at a recommenda-
tion regarding the characteristics of a general coding standards
guideline for higher education with respect to each category.

V. VIEWS

A. Typography

The purpose of typography is mainly to improve consistency
and neatness in the appearance of the code. It enhances
program readability. Typographic style factors include overall

program formatting, module separation conventions, identifier-
naming conventions, and conventions for special-case font
or type styles, statement formatting, indentation, embedded
spacing and use of blank lines [4]. Naming conventions
sometimes include specific prescriptions such as the use of
prefixes, postfixes, upper and lower case, underscores and
lexical clues in variable names to convey the type of a named
entity. In object-oriented contexts, a further prescription is
common — i.e. of naming classes as nouns and methods as
verbs.

Rules about commenting practices in terms of the style,
volume and frequency of comments are also deemed typo-
graphic.

The prominent element of typographic specification relates
to indentation rules. The purpose of indentation is to reveal the
subordinate nature of blocks of code. Plum and Weinberg [14]
has summarized the fundamental rule for indentation which
underlies almost all popular formats:

Each line which is part of the body of a C control
structure (if, while, dowhile, for, switch) is indented
one tab stop from the margin of its controlling line.
The same rule applies to function, struct, or union
definitions, and aggregate initializers.

Typographic aspects of coding standards can be clearly
defined. These aspects are an inherent part of coding stan-
dards. Most coding standards documents devote a considerable
portion of the write-up to stylistic issues. Of the respondents
who elaborated on specific standards, all but two referred to
typographic aspects. Some individuals seem to equate coding
standards with typographic rules. For example, two respon-
dents gave the following answers in response to a request for
specifics about the coding standards they prescribe for their
students:

Use PLUM indentation.
and

For coding in Java:
1) use capitalized whole words to compose names

for classes
2) same for other names, but do not capitalize first

word
3) use uppercase for names denoting final (con-

stant) values
4) Either get NetBeans to format code or adhere

to a classic C style
Because typographical requirements are usually aimed at vi-

sualising language concepts and structures that are recognised
by language compilers, much of it can easily be automated.
Different styles are advocated and supported by style format-
ters such as NetBeans. Oman and Cook [12] contend that many
style formatters and texts on style are not based on theoretic
foundations or empirical evidence but are unsubstantiated
subjective recommendations. Nevertheless, most developers
don’t need empirical proof for the application of a specific
style if it feels natural to apply and if the benefits seem obvious
enough to warrant its application.

When a specific standard is outlined, the typographic details
should be stated and enforced. However, when a general

guideline for education is to be specified, we are of opin-
ion that detailed typographic issues should not be specified,
because it is likely that people will disagree on many of these.
General specifications such as consistency and enhancement of
readability by means of specified use of white space should
be adequate. Individuals can be advised to supply their own
interpretation of the general guidelines and apply it to the
detailed level of their own choice.

B. Clarity

We distinguish between typographic (mechanical) enhance-
ment of the readability of code, and measures that can be
applied by humans, using human intelligence, to enhance the
readability of code. The latter we call clarity measures. Clarity
emphasises the fact that code should mainly be written for
human readers to understand and appreciate.

According to Zaidman [8] program readability is not only
affected by consistency of coding style but also by documen-
tation, choice of type and identifier names, and complexity of
algorithms. These issues should be addressed by appropriate
clarity guidelines. Clarity goes beyond typographic rules. For
example, it concerns the content of comments and the meaning
of variable names, and issues such as the cohesion in modules,
coupling between modules, and the size of modules.

The organisation of code also plays an important role in the
clarity of the code.

Naming conventions usually specify the rules related to
selecting identifier names and formatting them. In existing
coding standards, the emphasis seems to be on formatting
conventions, which we deem typographic. Occasionally terms
like meaningful, descriptive and self-documenting are used to
specify how appropriate identifier names should be selected.
Deissenboeck and Pizka [15] conducted analysis of identifier
names in a number of real life software systems from which
it is evident that identifier naming remains a problem, due to
the use of different names for the same concept, the use of
names that are not as descriptive as they seem, and the use of
names that are too general. As Plum and Weinberg [14] noted,
standards for choosing names should serve the convenience of
readers, and should not serve as a shortcut for the writer.

When it is expected that comments are included in code,
guidelines often offer only information about the syntax and
position for commenting. According to Nurvitadhi et al. [16]
the textbooks they investigated offered limited guidance about
what should be included in these comments. In order to
raise commenting guidelines above plain syntax expectations,
students should be given clear and detailed guidelines for com-
menting [16]. These guidelines should not only differentiate
different types of comments and their purpose, but should also
emphasise their content and proper writing style.

Oman and Cook [12] define good style as creating the most
understandable expression of the algorithm being coded. Prac-
tical guidelines to increase comprehension sometimes include
restrictions on the length of modules. Hortsmann [17] suggests
that the number of statements in a member function should
be limited to a maximum of 30. Plum and Weinberg [14]
advises developers to set a conscious limit of 25 uncluttered

statements per module to prevent modules to become difficult
to comprehend.

Most of the respondents were fairly passionate about read-
ability of code. The following answer from one respondent
illustrates this:

One important point I emphasize is that the com-
puter wants raw byte code: programs are written
for other humans to understand. So the concept
of readability is introduced early and discussed
throughout the course.

However, from their answers it is not always clear if they
think about readability deeper than in typographical terms.
Some answers give the impression that readability only con-
cerns correct indentation:

I talk about readability when explaining the use of
if statements, loops etc, and encouraging them to
indent the code.

The following answer also shows that typographical issues
are dominant. However, the last remark suggests a possible
concern about other issues:

Readable code is addressed in just about every lec-
ture. Not only are the program structures discussed,
but also how the structures should be typed to
increase readability. I also discuss what techniques
should be avoided.

There is a need to convey to students (and possibly some
lecturers as well) that writing a program which is clear and
readable requires effort and creativity. We have to emphasise
that code should be written in a way that humans can easily
understand, even if the underlying algorithm is complicated.
Aiming to facilitate such human understandability of code
requires thought and energy that goes beyond simply getting
the algorithm to work correctly. For example, effort should be
put into simplifying the flow of logic, the selection of names
as well as to the wording of comments. Poole and Meyer [6]
remarked that the guidelines of good writing and the guidelines
of good programming have a great deal in common.

Guidelines for the enhancement of clarity of code are not
easy to specify. Some organisational rules, such as the order
in which entities should be listed and how they should be
grouped, are helpful but often language specific. Metrics to
reduce complexity, such as limitations levels of nesting and
length of blocks, are useful but regularly more creativity
is needed to write code that can easily be followed. There
are no rules that can guarantee an identifier name to be
meaningful and descriptive. Writing concise explanations is
often trickier than writing code. Clarity issues can thus not
be easily addressed in a general guideline. Educators can be
advised to be aware of unclear student solutions. Educators
should guide students to improve by giving them constructive
feedback on specific mistakes they have made.

C. Flexibility

Software is not static. Almost all software is modified con-
tinuously during its life to add features, to expand capacities, to
implement new capabilities or to support different equipment.

For this reason every developer should realise that change is
inevitable.

The Agile Movement announced itself through the Agile
Software Development Manifesto, which was published by a
group of software practitioners and consultants in 2001 [18].
The need for flexible, adaptable and agile software develop-
ment has become important in the fast moving modern world.
Practices such as modularity, encapsulation, independence and
avoiding numerical literals contribute to flexibility.

Modular design is fundamental in development of flexible
code. Visibility and information hiding conventions—such as
rules regarding what should be declared as public, protected,
or private — underlies modular design and contributes largely
to the ease of maintenance of code. The concept of adaptability
is not new. The implementation of modularity to achieve
flexibility has been advocated for many years. As early as 1972
Parnas [19] also advocated modular design with information
hiding in mind in a 1972 publication.

The object oriented programming paradigm, inherent in
almost all programming and design courses, is geared towards
the development of flexible and adaptable systems. The re-
sponses of the participants supported the notion that these
concepts are seriously taught. For example one respondent
said:

I try to show the differences between code that
adheres to principles like encapsulation and code
that does not.

Another respondent emphasised:

There are many established good practices that I
impart to the students, and assess. These are not
personal preferences, by the way. But they tend to
be semantic oriented, rather than syntactic. There is
so much going on with inheritance, overloading, ac-
cessibility, polymorphism and it needs to be covered
somewhere.

However, some of the guidelines for flexibility may be some-
times overdone and are not equally appreciated by everybody.
One respondent remarked:

Just last week I came across a textbook exam-
ples that declared so many unnecessary (my view!)
named constants, that if made the programme very
difficult to understand. In the ”rewritten” example
given to the students, I changed some of these
named constants to literal values (where deemed
appropriate).

We suspect that most educators will be comfortable with
guidelines stipulating that the basic object oriented principles
should be taught and be adhered to. A guideline document that
can be used in a specific situation should state the requirement,
illustrate the reasons for the application of such a requirement
and give some examples and counter examples to clarify what
is meant by the requirement and how strict it should be applied.
Unfortunately the situation and level of application of these
principles is very dependent on the objectives of a module
and level at which it is presented. General guidelines can at
best state the requirements general terms. Educators can be

advised to supply their own motivations and examples to give
substance to the requirements.

D. Reliability

Everything that can be done to make code less error prone
falls into this category. Code that is written to be flexible is
normally also more reliable simply because the principles to
enhance flexibility also contribute to localisation and easier
isolation of possible errors, which in turn renders the code less
error prone. When code is written in discrete modules having
high cohesion and low coupling, the occurrence of unexpected
errors is lower [20]. We maintain that reliability is mainly
achieved by adhering to flexible guidelines. However, there
are some implementation practices that are not directly related
to flexibility but that are likely to reduce the occurrence of
programming errors, for example having pure accessors and
mutators, and declaring explicit constructors and assignment
operators in C++.

According to Zaidman [8] properly written and enforced
guidelines can support educators in the ”tedious job” of
discouraging students from engaging in self-destructive coding
practices. Some simple stylistic habits can help to avoid some
common bugs. One example is Ambler’s [1] recommendation
to write the constant on the left side of comparisons. For
example write if (7 == a) in stead of if (a == 7),
to avoid the possibility of using assignment in stead of
comparison. If this habit is applied, the compiler will detect the
error. Although this is a valuable suggestion, it is interesting to
note that in the very same document in which the suggestion
is made, Ambler neglects to apply it uniformly over all the
coding examples, showing that adherence to standards requires
conscious effort and application.

To avoid logical errors, developers should be conscious
of control flow. Horstmann [17] advise against the use of
break and continue statements. He also warns against catching
exceptions without handling them. They should rather be
thrown to callers to handle it. If the exception does occur,
silently ignoring the exception can create incorrect anomalous
behaviour that could be very hard to track down [3]. Horts-
mann [17] advocate the inclusion of an else section for each
if statement in nested if statements, even if it requires the
inclusion of empty blocks to clarify the control flow. These
style rules may help prevent certain kinds of bugs. However,
violations of those style guidelines are not particularly likely
to be bugs [3].

In general respondents did not agree about many of the
suggested guidelines to avoid ”hard to find” bugs. The answers
that respondents offered to the question relating to solutions
which applied different loop structures, illustrated quite clearly
that it will be hard to specify standards in this regard that
would be accepted easily.

Some felt strongly for the second solution and motivated
that endless loops and the use of breaks are considered
harmful, For example:

Solution 2 is better - No break (generally bad style,
although can be justified in certain contexts). It also
avoid a messy ”while true” condition.

Others were indifferent:
Both are equally valid. No preference.

Yet others had an opinion that none of the solutions are as
good as their own preferred solutions:

I would recommend neither. Sorry. In a modern
language, I would use a full-scale iterative control
structure as in:

i n t t a s k ;
f o r (t a s k =bag . i n () ; t a s k <0; t a s k =bag . i n ()) {

/ / compute r e s u l t
bag . o u t (r e s u l t) ;

}
bag . o u t (t a s k) ;

Perfect!!
and

Both pieces of code are horrifying. What guarantees
that ’task’ becomes less than 0? ’task’ is not needed
anyhow. Assuming that bag.in() may at some stage
yield a negative value, the second ”solution” is
preferable to the first. How about rather coding:

whi le (bag . i n () >= 0)
bag . o u t (r e s u l t) ;

bag . o u t (t a s k) ;

In this solution the respondent created more concise code by
eliminating ’task’ in the loop. Yet it is used (uninitialised) after
the loop is completed. It also neglects the need to compute the
value of ’result’ that is used by bag.out in the loop.

For more complicated problems one is likely to encounter
even more different viewpoints about what solutions are bad
and what is good.

Besides being an instrument that can be used across modules
to instil good practices, the purpose of a departmental coding
standards document is to introduce students to the very notion
of standards and adherence thereto, as a prominent part of the
daily life of many coders in industry. Without general ”buy
in” from staff, such a document will loose its power. It is
therefore important to avoid guidelines that may not be fully
supported by all staff members. It may be wise to steer clear of
specific guidelines regarding ways to write more robust code
and to allow lecturers to teach these aspects as they deem
appropriate. Most students will gain by being exposed to a
broader spectrum of techniques to avoid common errors and
will be able to apply those that work for them.

E. Effectiveness

Effectiveness relates to finding elegant and efficient solutions.
Very few existing coding standards touch on this topic. Cobb
[13] remarks that coding standards include style and elegance,
but that elegant code will have a short life if it is not
maintainable. Ambler [1] also advises that optimisation is
not as important as customer needs and correctness. Rising
[21] allocates marks to efficiency but says that efficiency is
generally not an overwhelmingly important item. Roth [22]
mentions that some of the emphasis on a good algorithm
design can be lost in the emphasis on style and documentation.

In an educational setting, elegancy and efficiency is im-
portant and should receive adequate attention. We will do
our students a disservice if effectiveness as a category of
coding standards is overshadowed by the other categories.
Lecturers should explicitly teach elegance and expect students
to appreciate it. Teaching the subtleties of finding clever and
yet simple solutions are mostly achieved by setting a good
example to the students. The following answers by respondents
are illustrative of how they use examples in their teaching.
Lecturers provide their own examples:

Elegant coding is introduced through the provision
of elegant solutions to problems discussed during the
lecture.

They discuss deficiencies in student solutions:
I usually talk about elegant coding solutions at
the first lecture after each lab. In the lab I’ll see
solutions that are poorly written and inefficient. I
will then proceed to discuss the merits/demerits of
some of the solutions and present a solution that is
better and most importantly - how it was arrived at.

They also compare different solutions:
I don’t usually talk about elegance, but try to show
how to improve code to be more efficient, readable
and try to show the differences between code that
adheres to principles like encapsulation and code
that does not.

In our opinion it is not possible to write general guidelines
for creating more effective code. Guidelines to avoid gross
inefficiency like duplication of code and unnecessary variables
can be specified, but is so obvious that hardly needs to
be specified in a guideline. Efficiency and effectiveness are
mostly algorithmic based and inherently situational. These
issues can thus not be addressed in a general guideline and
can best be taught by comparison of different solutions for
specific problems.

F. Summary

The above categorisation of coding standards and our ana-
lysis of the viewpoints about these issues gave us insight into
their possible role in teaching good programming practices.
The five categories of coding standard guidelines discussed
here are intertwined and reliant on one another.

Typography is mechanical. Its application is easy and can
even be automated. Its benefit in education is mainly in
enhancing readability and consequently making code easier
to assess. Because detailed prescriptions are controversial a
general guideline should delegate responsibility for its speci-
fication to individual educators.

Clarity requires higher cognitive skills. Decisions about
the clarity of code is situational and highly subjective and
therefore difficult to teach and problematical to specify. A
general guideline can at best only advise that educators be
reactive to unclear code.

Reliability mainly relies on experience. Learning how to
avoid errors is best done by having suffered the consequences
of making them. Unfortunately students cannot be granted

enough experience in the limited time available to teach them.
We therefore have to expect them to follow prescriptions
based on our experience as well as on experience reported
elsewhere. Due to its controversial nature, the specification
of guidelines on reliability should again be delegated to
individual educators. They should be urged to emphasise the
rationale for the prescriptions the give.

Flexibility is probably the most valuable in industry and
many of the industry standards that are aimed at enhancing the
maintainability and agility of systems are already included in
our curricula. General guidelines should state the requirements
in general terms and require educators to supply examples to
give substance to the requirements.

Effectiveness is a category that is highly valued in some
academic circles but ignored in many industry standards.
Efficiency and elegance are often achieved at the cost of
clarity, flexibility and reliability. We are faced with the chal-
lenge to promote effectiveness without compromising the other
valuable qualities of good code. General specifications for
effectiveness are either too trivial or too specific to be included
in a general guideline.

VI. CONCLUSION

To conclude we give our verdict on the research questions:

A. What are the characteristics of a coding standards docu-
ment suitable for higher education?

We are of opinion that if a coding standards document is to
be compiled, it should avoid being fastidious about superficial
issues. Style guidelines like placement of curly brackets serve
no purpose. Coding standards should give guidance that could
ultimately instil coding habits that enhance the overall quality
of code. Ala-Mutka et al. [5] reminds us that to be aware that,
no matter which coding rules students learn to apply at the
university, during working life they may be required to follow
different kinds of company style guides or coding conventions.
One respondent also remarked:

The standards that graduates are forced to learn
at University probably have little or no bearing on
what will be force fed in a programming sweatshop
where whim and fashion sometimes prevail over
common sense.

In our view it is not possible to compile a complete generic
guideline for creating quality code, mostly because quality is
both subjective and situational. A general guideline that can
be used as a teaching instrument across modules can at most
advise individual educators to specify their own rules with
regard to each of the categories. A category like typography
that lends itself to clear specification can not be finalised
because its detail may be controversial. The same applies to
some aspects of flexibility and reliability. Other categories like
clarity and effectiveness are more situational and achieving
them requires higher cognitive skills. Constructive guidelines
are hard to formulate for these categories. They are better
taught by giving reactive guidelines when counter-examples
are encountered.

B. What are the obstacles in teaching good programming
practices?

Educating students to adhere to good coding practices and to
embrace the values of coding standards remains challenging.
It is much more difficult to teach values and norms than it is
to impart technical knowledge. Furthermore most students are
under the impression that our sole objective is to teach facts
rather than insight, let alone values and norms.

A difficult objective in this regard is to change the attitude of
many of the students from the frivolous view that correctness
is the most important, if not the only, criteria for a good
solution. Unfortunately this viewpoint is widely presumed.
Rising [21] reports incidents of evaluation where correctness
is the only criterion for a program grade. One respondent said
the following in reference to the student’s attitude:

making things work is seen as more important than
making it ”look good” - probably rightly!

The concluding remark reveals that this lecturer partially
shares the student’s opinion. We regard it as our task to
overturn this attitude—a task that is extremely difficult because
the contrary attitude is so broadly reinforced.

We see it as our educational responsibility to bring about
the general understanding that readability, neatness, clarity,
maintainability, elegance, etc. are important criteria for the
evaluation of programs. To value correctness alone is very
narrow since most software must be read and modified and is,
at best, only temporarily correct.

Another hindrance educators have to face is that commercial
code is seldom refactored to perfection. As a result, such
code is likely to contain many examples of poor coding style
and practices. Drozdz [23], for example, analysed the various
versions of Sun’s JDK from a maintainability point of view.
He reports thousands of so-called ”code smells” — i.e. code
segments where design could be improved. (Simple examples
would be the occurrence of variables that are declared but
never used; or the occurrence of excessively long methods;
etc.) Luethi [24] is also of opinion that the Linux kernel,
which is generally seen as a high quality product, contains
some excellent examples of bad coding. Students are inclined
to reason that it is good enough if their code matches real
code written by real people in the real world. In the presence
of an overwhelming body of bad examples, even in textbooks
[25], it can be daunting to convince students otherwise.

C. How should good programming practices be taught?

Good educators realise that students mostly learn by ex-
ample. Students will not do what we say. They will rather
mimic what we do, even if we draw their attention to it
not to do so. For this reason it is very important that the
examples we give them adhere to everything that we believe
in, to the finest detail at all times. One bad instance can undo
the achievement of a large amount of good examples. Ideally
the values we would like to instil should be uniformly and
consistently shown to them by all the lecturers involved in the
presentation of all their courses. According to Zaidman [8]
programming style and coding guidelines need to be applied
consistently department-wide so that students do not need to

make adjustments from course to course. Rising [21] agrees
by stating that having departmental guidelines saves a lot
of un-learning and re-learning when students take a course
from a different instructor. However, this is much more easily
said than done. Not all educators are equally devoted. Every
individual educator has his or her own style of teaching and
set of preferences and values. When educators are expected to
alter their preferences it is possible that they can loose their
enthusiasm. Consequently they may become less spontaneous
and less able to influence the students. The balance between
academic freedom and ensuring quality education is delicate.

If the examples to which the students are exposed are solid,
the need for having guidelines for students is diminished.
Zaidman [8] observed that good examples serve the same
purpose as guidelines:

Fortunately, students tend to mimic sample pro-
grams from their textbooks and class discussions.
Therefore, students in beginning classes will write
sound code without paying much attention to specific
guidelines

Example driven teaching seems to be a good alternative
to having specific guidelines. The total learning experience
can however be enhanced if the application of guidelines is
combined with a strategy of teaching by example. Roth [22]
reports success when he applied the following tactics to teach
students that good coding is important:

a) Showing sufficient examples of poorly written and nu-
merous (45 to 50) examples of well written code in the
course of the program,

b) requiring a rigid standard for the programs submitted,
c) expecting students to modify someone else’s program

using only the internal documentation provided.

In the latter assignment he matches strong and less competent
pairs to swop programs and contend that the stronger students
can salvage the poor writing of the less competent students,
while the poorer performers can learn from the better examples
given to them.

Oman and Cook [12] also suggested that the importance
of writing readable programs can be learned by performing
a maintenance task on a poorly written program. This should
convince them that poor style severely hinders program main-
tenance.

Having solid guidelines and enforcing them is considered
beneficial. However, Zaidman [8] found that both students and
faculty agree that just following guidelines will not of itself
make someone a better programmer. The ideal would be to
give explicit good guidelines to the educators how to teach
students to create quality code. Unfortunately this is even more
difficult to achieve than writing a guideline for writing quality
code. The best we can do is to inspire educators to appreciate
the values and norms underlying coding standards and to pass
the inspiration on to their students. To put it in Plum and
Weinberg’s words:

”.. if we can make them program self-consciously,
we shall have succeeded as teachers.” [14]

REFERENCES

[1] S. W. Ambler, “Writing robust java code. the ambysoft inc. coding
standards for java v17.01d,” January 15, 2000, [Online; accessed
2008-03-29]. [Online]. Available: http://www.ambysoft.com/downloads/
javaCodingStandards.pdf

[2] A. Bridger and J. Pisano, “C++ coding standards,” February
28, 2001, [Online; accessed 2008-03-25]. [Online]. Avail-
able: http://0-alma.nrao.edu.innopac.up.ac.za/development/computing/
docs/join%t/0010/2001-02-28.pdf

[3] D. Hovemeyer and W. Pugh, “Finding bugs is easy,” SIGPLAN Not.,
vol. 39, no. 12, pp. 92–106, 2004.

[4] P. W. Oman and C. R. Cook, “Typographic style is more than cosmetic,”
Commun. ACM, vol. 33, no. 5, pp. 506–520, 1990.

[5] K. Ala-Mutka, T. Uimonen, and H.-M. Jrvinen, “Supporting students in
c++ programming courses with automatic program style assessment,”
Journal of Information Technology Education, vol. 3, 2004.

[6] B. J. Poole and T. S. Meyer, “Implementing a set of guidelines for cs
majors in the production of program code,” SIGCSE Bull., vol. 28, no. 2,
pp. 43–48, 1996.

[7] M. Litvin and G. Litvin, Java Methods A and Ab: Object-oriented
Programming and Data Structures. Andover, Massachusetts: Skylight
Publishing, 2006.

[8] M. Zaidman, “Teaching defensive programming in java,” J. Comput.
Small Coll., vol. 19, no. 3, pp. 33–43, 2004.

[9] D. Kember, Action learning and action research: improving the quality
of teaching and learning. London: Kogan Page, 2000.

[10] A. Lewins and C. Silver, Using software in qualitative research : a
step-by-step guide. Los Angeles ; London : SAGE, 2007.

[11] E. Henning, W. vanRensburg, and B. Smit, Finding your way in
qualitative research. Pretoria : Van Schaik, 2004.

[12] P. W. Oman and C. R. Cook, “A taxonomy for programming style,”
in CSC ’90: Proceedings of the 1990 ACM annual conference on
Cooperation. New York, NY, USA: ACM, 1990, pp. 244–250.

[13] L. Cobb. (2004, 10) C and c++ source code analysis using codecheck.
Abraxas Software, Inc. [Online; accessed 2008-04-11]. [Online].
Available: http://www.abraxas-software.com/pdf/ccuser.pdf

[14] T. W. S. Plum and G. M. Weinberg, “Teaching structured programming
attitudes, even in apl, by example,” in SIGCSE ’74: Proceedings of the
fourth SIGCSE technical symposium on Computer science education.
New York, NY, USA: ACM, 1974, pp. 133–143.

[15] F. Deissenboeck and M. Pizka, “Concise and consistent naming,” Soft-
ware Quality Journal, vol. 14, no. 3, pp. 261–282, September, 2006.

[16] E. Nurvitadhi, W. W. Leung, and C. Cook, “Do class comments aid java
program understanding?” Frontiers in Education, 2003. FIE 2003. 33rd
Annual, vol. 1, pp. T3C–13–T3C–17 Vol.1, 5-8 Nov. 2003.

[17] C. S. Horstmann, Computing concepts with Java essentials, 3rd ed.
Hoboken, NJ: Wiley, 2003.

[18] A. Cockburn, Agile Software Development. Boston: Addison-Wesley,
2002.

[19] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules,” Commun. ACM, vol. 15, no. 12, pp. 1053–1058, 1972.

[20] C. Y. Baldwin and K. B. Clark, Design Rules, Volume 1, The Power of
Modularity. Cambridge MA: MIT Press, 2000.

[21] L. Rising, “Teaching documentation and style in pascal,” SIGCSE Bull.,
vol. 19, no. 3, pp. 8–9, 1987.

[22] R. W. Roth, “The teaching of documentation and good programming
style in a liberal arts computer science program,” SIGCSE Bull., vol. 12,
no. 1, pp. 139–153, 1980.

[23] M. Z. Drozdz, “A critical analysis of two refactoring tools,” Master’s
thesis, Univeristy of Pretoria, November 2007, supervisor: Derrick
Kourie and Andrew Boake.

[24] R. Luethi, “Position paper for the xp-2003 workshop: Making free/open-
source software (f/oss) work better,” in Proceedings of Workshop at
XP2003 Conference, B. Fitzgerald and D. L. Parnas, Eds., Genoa, 28
May 2003, pp. 28–29.

[25] K. Malan and K. Halland, “Examples that can do harm in learning
programming,” in OOPSLA ’04: Companion to the 19th annual ACM
SIGPLAN conference on Object-oriented programming systems, lan-
guages, and applications. New York, NY, USA: ACM, 2004, pp. 83–87.

